Reduction in Plasma Phenylalanine Levels in Patients with Phenylketonuria with Live Biotherapeutic SYNB1618: Interim Analysis from an Ongoing Phase 2 Study

<u>Marja Puurunen¹</u>, Jerry Vockley², George A. Diaz³, Dorothy Grange⁴, Cary O. Harding⁵, Nicola Longo⁶, Hope Northrup⁷, John A. Phillips III⁸, Shawn Searle⁹, Janet Thomas¹⁰, Roberto Zori¹¹, Sharon Ernst¹, Nicole McWhorter¹, Mesaki Ndugga-Kabuye¹, Kristina Humphreys¹, Casey Woodbury¹, William S. Denney¹², Caroline B. Kurtz¹, Aoife Brennan¹

¹Synlogic Therapeutics, Inc., Cambridge, MA ²University of Pittsburgh School of Medicine, Pittsburgh, PA ³Icahn School of Medicine at Mount Sinai, New York, NY ⁴Washington University, St. Louis, MO ⁵Oregon Health Science University, Portland, OR ⁶University of Utah, Salt Lake City, UT ⁷McGovern Medical School, University of Texas, Houston, TX ⁸Vanderbilt University School of Medicine, Nashville, TN ⁹ICON PLC in Salt Lake City, UT ¹⁰University of Colorado School of Medicine and the Children's Hospital Colorado, Aurora, CO ¹¹University of Florida, Gainesville, FL ¹²Human Predictions LLC, Cambridge, MA

Background

- Phenylketonuria (PKU) is characterized by the inability to metabolize dietary phenylalanine (Phe) resulting in sustained elevation of plasma Phe levels following a protein meal.
- SYNB1618, a live, modified strain of the probiotic bacterium *E. coli* Nissle was engineered to consume Phe in the gastrointestinal (GI) tract through expression of the enzymes phenylalanine ammonia lyase (PAL) and L-amino acid deaminase (LAAD).
- SYNB1618 metabolizes Phe to harmless compounds trans-cinnamic acid (TCA) which is excreted as hippuric acid (HA) in urine, and phenylpyruvate.
- The potential of SYNB1618 to lower blood Phe level in PKU patients
 was studied in SynPheny-1. [NCT04534842]

Conversion of Phe into non-toxic metabolites

Figure 1. Mechanism of Action for SYNB1618, a Live Bacterial Biotherapeutic

- PAL3 enzyme converts Phe to trans-cinnamic acid
- LAAD enzyme converts Phe to phenylpyruvate

Safety

 Δ dap: Auxotrophy – requires diaminopimelic acid (DAP) to grow

Figure 2. Synpheny-1 Study Design

Methods

- SynPheny-1 is an open-label study in adult PKU patients with Phe ≥600 micromol/L (*Figure 2*).
- Patients followed individualized study diets reflecting baseline Phe intake from 7 days prior to dosing to 2 weeks after the last dose.
- The dose of SYNB1618 was gradually increased: 1x10¹¹ live cells for the first 3 days, 3x10¹¹ on days 4-6, then 1x10¹² TID on days 7-13.
- A D5-Phe tracer study was conducted at baseline and on Day 14 at the 2x10¹² dose.
- Key outcomes: change from baseline in D5-Phe AUC_{0-24h} and fasting blood Phe.

Results

- Data from an interim analysis of 9 PKU patients are presented.
- SYNB1618 was generally well-tolerated. The most common AEs were mild to moderate GI symptoms. No SAEs or deaths were observed. 1 patient discontinued the study due to anxiety.
- D5-Phe absorption from the gut was reduced by treatment (*Figure 3*).
- Plasma Phe was reduced by treatment on Day 7 and Day 14 (Figure 4).
- 4 of 8 patients had at least 20% blood Phe lowering at either Day 7 or Day 14 (*Figure 5*).

Figure 3. D5-Phe absorption from the gut was reduced. D5-Phe AUC₀₋ $_{24h}$ showed a 40% (95% CI 64.9, -2.7) decrease compared to baseline.

Synogic Lefe

Figure 4.

Change from baseline in fasting blood Phe level was -14.5% (CI -27.9, 2.2) on Day 7 after the dose-ramp and at the $3x10^{11}$ dose, -19.5% (CI -32.3, -4.3) on Day 14 at the $1x10^{12}$ dose, and +18.7% (CI -2.4, 44.3) after cessation of dosing.

Figure 5. Four subjects (50%) met the responder criterion of at least 20% Phe lowering at either Day 7 or Day 14. The mean reduction of Phe level was 254 µM in the responder population.

Conclusions

- SYNB1618 has demonstrated ability to access Phe from within the GI tract.
- Treatment with SYNB1618 led to a clinically meaningful decrease in blood Phe level.
- An optimized version of SYNB1618, SYNB1934 with improved Phe conversion potential has demonstrated Phe metabolism in healthy volunteers and is currently being evaluated in SynPheny-1.
- Development of live bacterial biotherapeutics as novel modality for treatment of PKU warrants further study in late-stage trials.