synlogic

Designed For Life

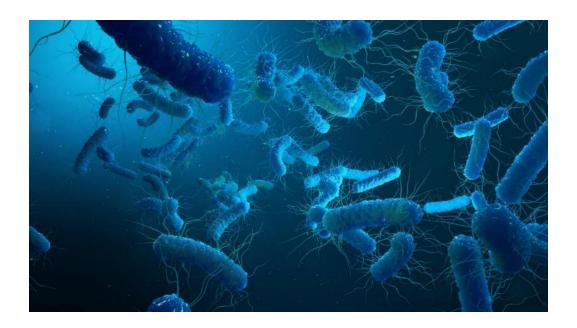
Corporate Presentation September 2020

Forward Looking Statements

This presentation contains "forward-looking statements" that involve substantial risks and uncertainties for purposes of the safe harbor provided by the Private Securities Litigation Reform Act of 1995. All statements, other than statements of historical facts, included in this presentation regarding strategy, future operations, future financial position, future revenue, projected expenses, prospects, plans and objectives of management are forwardlooking statements. In addition, when or if used in this presentation, the words "may," "could," "should," "anticipate," "believe," "estimate," "expect," "intend," "plan," "predict" and similar expressions and their variants may identify forward-looking statements. Examples of forward-looking statements include, but are not limited to, the approach we are taking to discover and develop novel therapeutics using synthetic biology; statements regarding the potential of our platform to develop therapeutics to address a wide range of diseases, including: metabolic diseases, inflammatory and immune disorders, and cancer; the future clinical development of Synthetic Biotic medicines; the potential of our technology to treat phenylketonuria and cancer; the expected timing of our anticipated clinical trial initiations and availability of clinical data; the benefit of orphan drug and fast track status; the adequacy of our capital to support our future operations and our ability to successfully initiate and complete clinical trials; the results of our collaborations; and the difficulty in predicting the time and cost of development of our product candidates. Actual results could differ materially from those contained in any forward-looking statement as a result of various factors, including, without limitation: the uncertainties inherent in the preclinical development process; our ability to protect our intellectual property rights; and legislative, regulatory, political and economic developments, as well as those risks identified under the heading "Risk Factors" in our filings with the SEC. The foregoing review of important factors that could cause actual events to differ from expectations should not be construed as exhaustive and should be read in conjunction with statements that are included herein and elsewhere, including the risk factors included in our quarterly report on Form 10-Q filed with the SEC on May 8, 2020, and in any subsequent filings we make with the SEC. The forward-looking statements contained in this presentation reflect our current views with respect to future events. We anticipate that subsequent events and developments will cause our views to change. However, while we may elect to update these forward-looking statements in the future, we specifically disclaim any obligation to do so. These forward-looking statements should not be relied upon as representing our view as of any date subsequent to the date hereof.

Synthetic Biotic™ Medicines Designed For Life

Bringing The Transformative Potential Of Synthetic Biology To Medicine


Corporate Overview

- The premier Synthetic Biology platform to engineer bacterial Synthetic Biotic medicines that benefit patients in new ways
- Team, technology and portfolio to succeed
- Core focus: Rapidly progressing metabolic programs
 - SYNB1618 PKU Phase 2 synPheny FPI expected late 2020
 - Advanced IND for **SYNB8802 in Enteric Hyperoxaluria**: FIH expected early 2021
- Partnership Opportunities: Immunomodulation in immunology and oncology
 - SYNB1891 monotherapy continues to enroll: data expected late 2020
- Strong cash position

Synthetic Biotic Medicines: A New Class of Medicines

Bacteria and Humans Co-Evolved and Co-Exist

We Rationally Design Bacteria
To Provide Clinical Benefit

The Result Is Therapeutic Bacteria With Potent And Programmable Therapeutic Effects

Building a Diverse Portfolio of Synthetic Biotic Medicines

Platform For Clinical Benefit Across Multiple Disease States

Validated Biological Targets

Where a
Synthetic Biotic
medicine is
uniquely
positioned to
impact patients

Enabling Engine
Core Differentiating
Capabilities

Synthetic Biology Internal + Ginkgo

Manufacturing of live Synthetic Biotics

Regulatory, Translational & Clinical Dev.

Internal Focus:
Metabolic Programs

Consumption of toxic metabolites from the GI tract

External & Collaboration Focus: Immunomodulation

Immunology and oncology: Leveraging the ability of bacteria to **interact** with the immune system

Enabling Engine

Enabling Engine Core Differentiating Capabilities

> **Synthetic Biology** Internal + Ginkgo

Manufacturing of live Synthetic Biotics

Regulatory, Translational & Clinical Dev.

Clinical Evidence

- >200 humans dosed with Synthetic Biotic medicines
- 3 INDs opened with the U.S. FDA
- Supportive regulatory feedback from global agencies
- Safe (>100 years of human experience) probiotic bacterial chassis

Core Technology

- Deep synthetic biology expertise with Ginkgo Bioworks collaboration
- Modular and reusable synthetic biology components enable iterative, efficient platform learning
- Internal process development and GMP manufacturing capabilities

Pipeline

	Exploratory	Preclinical	IND-Enabling Studies	Phase 1	Phase 2
Discoulling and the	SYNB1618				
Phenylketonuria	Next generation				
Entoric Hyporovaluria	SYNB8802				
Enteric Hyperoxaluria	Next generation				
Maple Syrup Urine Disease (MSUD)					
Immuno-Oncology Solid Tumors	SYNB1891				
Inflammatory Bowel Disease					Key
SARS-CoV2 Vaccine				Metabo	olic Diseases
Other Inflammation Programs					omodulation

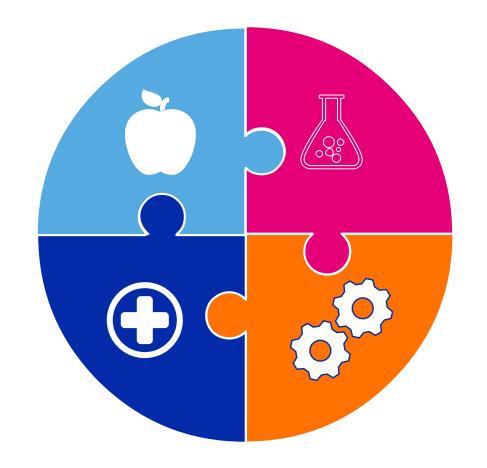
Upcoming Milestones

Synlogic Entering Data Rich Period In The Clinic

		2020			2021		
	Expected Milestone	early	mid	late	early	mid	late
SYNB1618	Initiate Ph.2 study in PKU patients						
PKU	Ph.2 Phe-lowering read-out						
CVNIDOOO3	Initiate IND-enabling studies	initiated					
SYNB8802 HOX	Initiate Ph.1 study in HV and Patients						
	Ph.1 Patient Read-out						
CVND1001	Ph.1 Monotherapy read-out						
SYNB1891 I/O	Initiate Ph.1 combination study arm						
., 0	Ph.1 Combination therapy read-out						

Significant Clinical Readouts Within Our Current Cash Window

Why Metabolic Diseases For Synthetic Biotic Medicines?


Validated Biology

Diseases with known pathophysiology

Dietary intervention provides support for GI-based approach

Unmet Medical Need

Across both inherited and acquired metabolic diseases

Platform Proof of Mechanism

PKU program demonstrated we can consume toxic metabolites in the GI tract

Subsequent programs build on experience

Unique Advantage of SYNB

Bacteria act catalytically

Contain multiple enzyme pathways

Are protected from digestion within the GI tract

Phenylketonuria (PKU)

Meaningful Opportunity To Improve Patient Lives

Emerging treatment options will continue to leave many patients behind

SYNB1618 demonstrates potential to lower Phe in PKU patients

Phase 2 Phe-lowering trial starting in 2H 2020

Next generation strain in development

Phenylketonuria (PKU)

Julia, living with PKU

Why PKU?

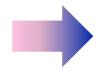
Biology well-understood Inability to break down phenylalanine (Phe) results in toxic levels in the brain leading to cognitive impairment, convulsions and behavioral problems

Phe in GI tract = ↓ blood Phe = clinical benefit

High unmet need particularly for pediatric patients

~ 34,000 patients US + EU

Status


Solid oral formulation of SYNB1618 demonstrated good tolerability and activity in healthy volunteers

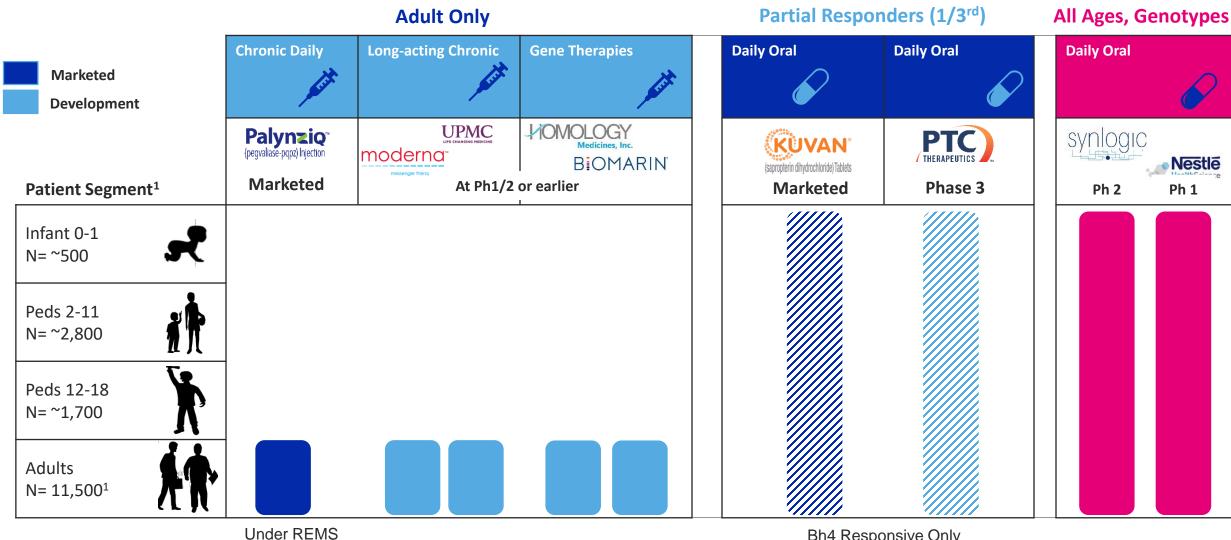
Enrolling Phase 2 SynPheny Study in PKU patients

PKU Has Changed: Parents Expect Their Children To Achieve Their Full Potential

Prospect of severe mental disability and institutionalization.

Parents wanted PKU child to avoid institutionalized care before adulthood.

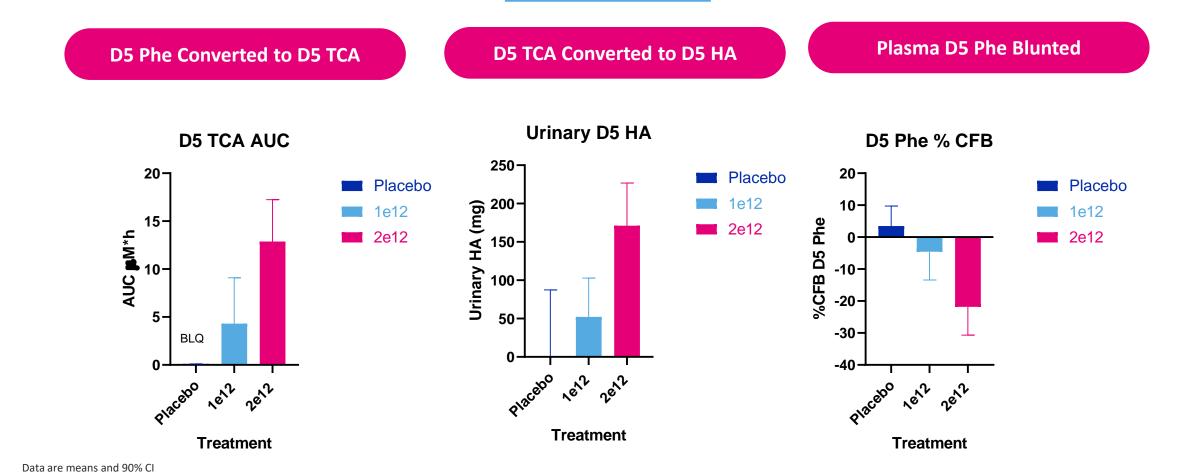
Early diagnosis and strict diet control enables better Phe management.


Parents expect PKU child to achieve full potential, college attendance, self-support.

Reality: 25% – 65% of patients still struggle to maintain blood Phe within target range

SYNB1618 Differentiation

SYNB1618 uniquely positioned to address needs across ages and genotypes



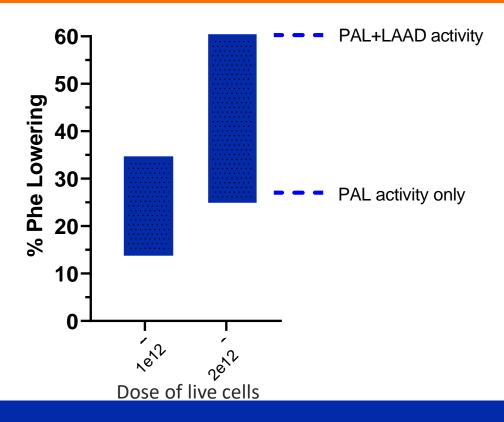
Bh4 Responsive Only

program

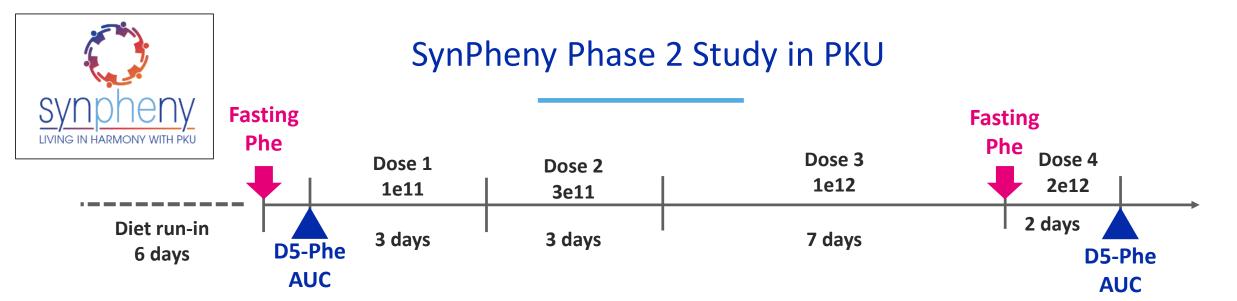
SYNB1618 In The Clinic: D5 Tracer Data in Healthy Volunteers

SYNB1618 Mechanism Confirmed: Accessed D5 Phe Tracer in Gut & Lowered Plasma D5 Phe

Phe Modeling From Urinary HA Levels In HV Solid Oral Bridging Study


Inputs

Strain Activity


Metabolite Consumption Requirements¹

Bridging Study Biomarker Read-outs² Proprietary Synlogic Simulation Models

Modeling Predicts SYNB1618 Activity In Target Range

Study Goals

- Demonstrate Phe Lowering in PKU Patients
 - Plasma Phe lowering in fasted state at 1×10^{12} live cells over 7 days
 - Post meal D5-Phe AUC lowering at 2 x 10¹² live cells (not impacted by diet)
- Validate PD Model
 - Understand relationship of strain specific biomarkers with plasma Phe lowering
- Safety and Tolerability

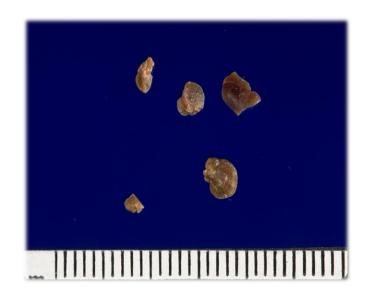
Execution

- Flexible design allowing home-based or office-based visits
- Informed by direct patient feedback on executing trials in the COVID era
- Dose ramp to improve tolerability
- Strict diet control to ensure consistent Phe intake, including 6-day run-in

Enteric Hyperoxaluria

Our Next Step To Synthetic Biotic Medicines

High unmet medical need with no available therapeutic options


Efficient clinical development: PoC achievable in Phase 1b

SYNB8802 has potential to meaningfully reduce urinary oxalate levels

Enteric Hyperoxaluria

Our Next Step To Synthetic Biotic Medicines

Why Enteric Hyperoxaluria?

Biology well-understood: Inability to metabolize oxalate in the gut, leading to high levels of urinary oxalate and increased risk of kidney stones; progressing to chronic kidney disease

Frequent complication of inflammatory bowel diseases, ileal resection and Roux-en-Y gastric bypass

urinary oxalate = \downarrow stone risk = clinical benefit for patient No treatment options for 200,000 - 250,000 US patients

Status

Rapid preclinical development: project initiation to development candidate in <10 months. IND-enabling studies ongoing

Potential initiation of health volunteer studies in early 2021

Potential initiation of Roux-en-Y patient study in early 2021

Hyperoxaluria: Primary vs. Enteric

	Primary Hyperoxaluria	Enteric Hyperoxaluria		
Pathology	Family of autosomal recessive monogenic disorders in which liver enzyme deficiency results in endogenous oxalate overproduction	Pathogenic hyperabsorption of dietary oxalate, often accompanies bowel disease or bariatric surgery		
Urinary Oxalate Levels	90 – 500 mg / 24 hrs (up to 10x normal)	45 – 130 mg / 24 hrs (up to 3x normal)		
Onset	Pediatric	Adult		
Clinical Mgmt	Limited nutrition options; nephrocalcinosis; dialysis; transplant; pyridoxine	Limited nutrition options; treatment of kidney stones as they occur; nephrocalcinosis; dialysis		
U.S. Epidemiology	~5,000 – 8,000	200,000 – 250,000		
Key Players	Dicerna 2 Alnylam* pharmaceulicals	Allena Synlogic		

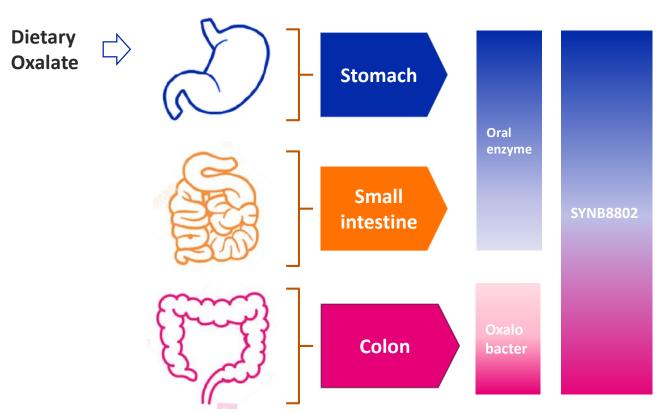
Enteric Hyperoxaluria Case Studies: An Important Cause of Renal Failure

33-Year-Old Female with Crohn's

- 33 yo woman with Crohn's requiring bowel resection resulting in severe hyperoxaluria (135 mg/day)
- Clinical course punctuated by:
 - Recurrent kidney stones
 - Progressive renal failure
 - Hemodialysis
 - Renal transplant x 1
 - Recurrent renal failure
 - Hemodialysis
 - Renal transplant x 2

48-Year-Old Male with Crohn's

- 48 yo man with Crohn's requiring 2 bowel resections with severe hyperoxaluria (110 mg/day)
- Clinical course punctuated by:
 - Recurrent kidney stones
 - Nephrocalcinosis
 - Progressive renal failure
 - Hemodialysis
 - Renal transplant


47-Year-Old Female with Crohn's

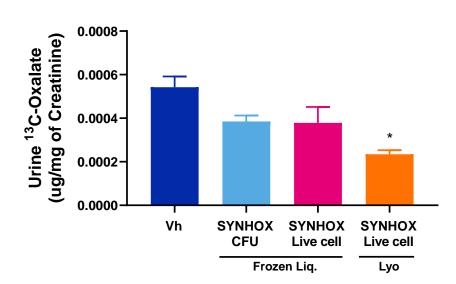
- 47 yo woman with Crohn's requiring extensive bowel resections with severe hyperoxaluria (114 mg/day)
- Clinical course punctuated by:
 - Recurrent kidney stones
 - Recurrent obstructive nephropathy
 - Progressive renal failure
 - Bilateral nephrectomies due to stone-related infections
 - Hemodialysis
 - Renal transplant
 - Recurrent renal failure

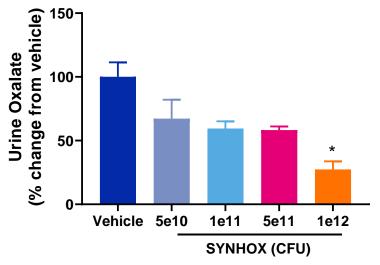
Urinary oxalate levels remains markedly elevated in all patients, despite aggressive medical regimen

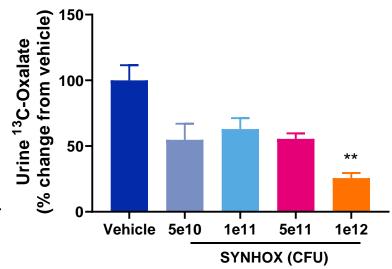
Enteric Hyperoxaluria Disease Pathogenesis

GI Based Therapies Have Demonstrated Lowering of Systemic Oxalate

- Pathogenic hyperabsorption of dietary oxalate
- Dietary oxalate absorbed throughout GI tract
- Result is urinary Oxalate (Uox) > 70mg/day
- Leads to recurrent kidney stones, nephrocalcinosis, kidney failure
- Treatment must absorb oxalate throughout GI tract, esp. in colon


Intestinal Degradation of Oxalate Throughout GI Tract Could Enhance Oxalate Lowering




SYN-HOX Attenuates Urinary Oxalate Increase

SYN-HOX Consumes ¹³C-Oxalate in Mice

SYN-HOX Attenuates Urinary Oxalate Increase In NHPs

SYN-HOX Consumes Oral Load of Oxalate in Mouse and Non-Human Primate Models

Enteric Hyperoxaluria: Clinical Development Strategy

Phase 1a Healthy
Volunteers

Multiple Ascending Doses

- High oxalate & low calcium diet run-in
- Primary: Safety & tolerability
- Secondary: Microbial kinetics of strain
- Exploratory: Change in plasma and urine biomarkers

Phase 1b Gastric
Bypass

Cross-over design

- TID dosing
- Approx. 20 hyperoxaluria patients (Roux-en Y gastric bypass)
- Uox >70 mg/day

Enables Rapid POC

Phase 2/3 Enteric hyperoxaluria

Parallel group design

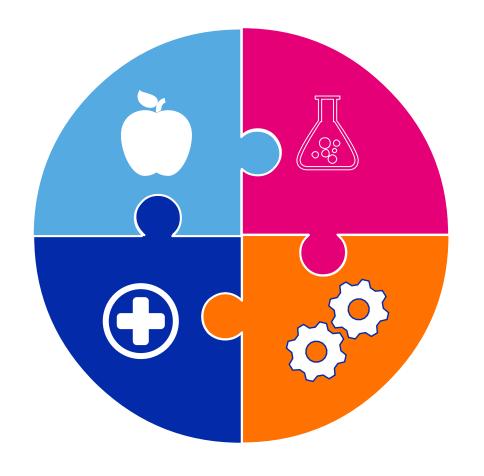
Patients with:

- Gastric Bypass
- Inflammatory bowel disease
- Cystic Fibrosis
- Short bowel syndrome
- Biliary/pancreatic diseases

+Preserved renal function and stone disease

Initial Phase 1 Study in Both Healthy Volunteers (data early 2021) & Roux-en-Y Gastric Bypass Population (data mid 2021)

Why Diseases of Immune System Regulation For Synthetic Biotic Medicines?


Cross-talk Between Bacteria and Immune System

Immune system has evolved to recognize bacteria

Bacteria have evolved mechanisms to control the immune response

Unmet Medical Need

Growing need for novel treatments for immunological diseases and cancer

Platform

Preclinical POC for both immune stimulation and immunoregulation

Can produce immune mediators (small molecules, peptides, human cytokines)

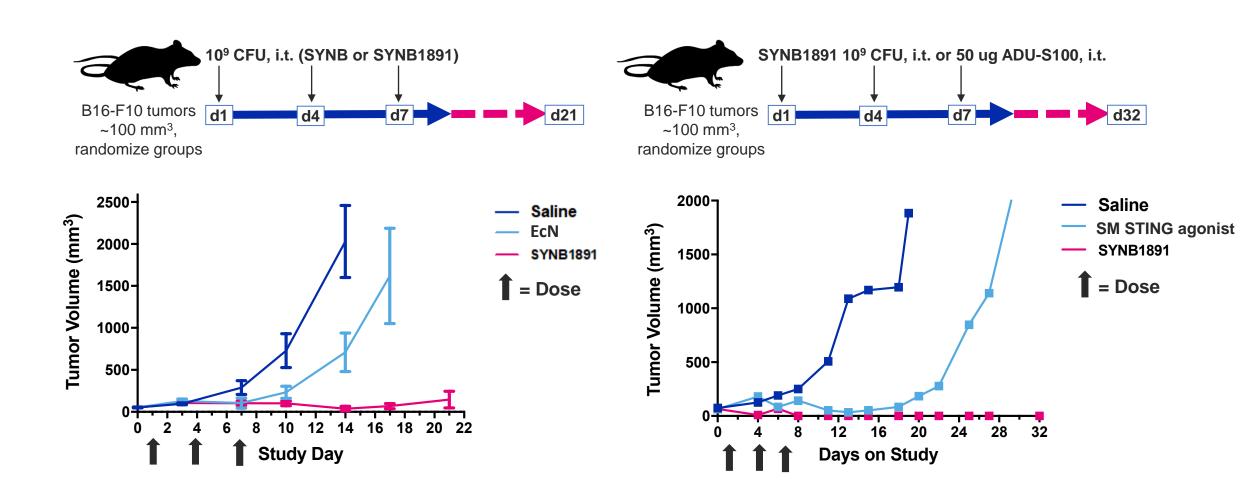
Unique Advantage of SYNB

Targeted efficacy and improved safety

Multiple effectors from single Tx strain delivered to site of disease

Immunomodulation & Immuno-Oncology

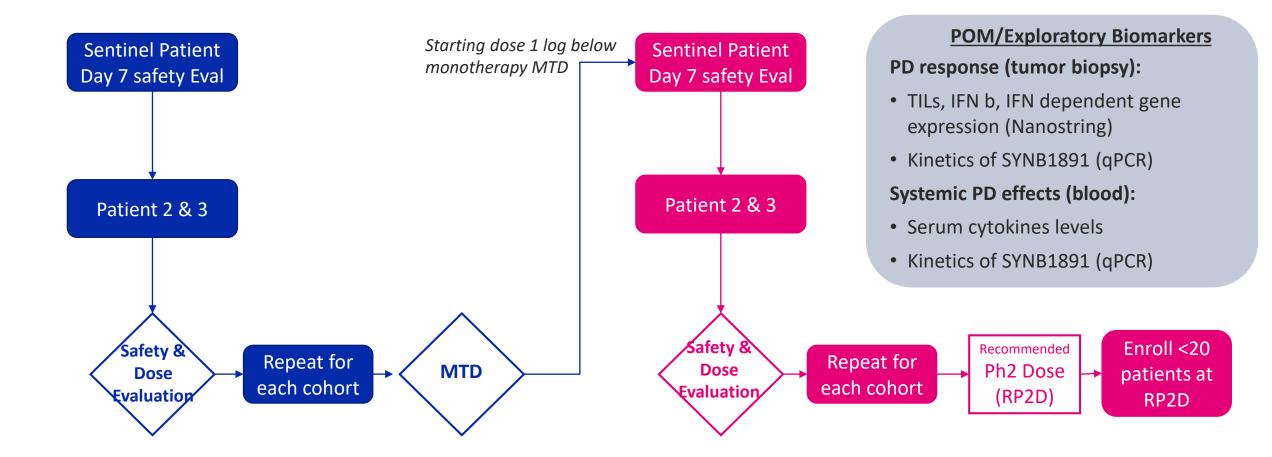
Synthetic Biotics can be engineered for immune activation or regulation


SYNB1891 will provide clinical data in 2020 from a monotherapy cohort

SYNB1891 has potential for improved efficacy relative to other STING approaches

SYNB1891 Induces Potent Anti-tumoral Effects

Effects Superior to 'Naked' STING Agonist in Animal Model of Cold Tumor



SYNB1891-CP-001 Study Design: Multidose Tolerability, IT Mono and Combo

Proof of Mechanism: Exploratory Biomarkers in Advanced Solid Tumors or Lymphomas

Arm 1: Monotherapy Cohorts

Arm 2: Combination Cohorts - Atezolizumab

Financial Summary as of 2nd Quarter 2020

Balance Sheet (unaudited)

Cash, Cash Equivalents, and Short & Long Term Marketable Securities

30 June 2020	31 Mar 2020
\$109.1M	\$114.3 M

Statement of Operations (unaudited)	
R&D Expenses	
G&A Expenses	
Net Loss	
Net Loss Per Share *	

Three Months Ended				
30 June 2020 30 June 2019				
\$12.9 M	\$9.7 M			
\$3.5 M	\$3.7 M			
\$(15.5) M	\$(12.3) M			
\$(0.44)	\$(0.45)			

Strong Cash Position With Runway Into 2022

Upcoming Milestones

Synlogic Entering Data Rich Period In The Clinic

Expected Milestone		2020			2021		
		early	mid	late	early	mid	late
SYNB1618 PKU	Initiate Ph.2 study in PKU patients Ph.2 Phe-lowering read-out						
	Initiate IND-enabling studies	initiated					
SYNB8802 HOX	Initiate Ph.1 study in HV and Patients						
	Ph.1 Patient Read-out						
CVND4004	Ph.1 Monotherapy read-out						
SYNB1891 I/O	Initiate Ph.1 combination study arm						
•	Ph.1 Combination therapy read-out						

Significant Clinical Readouts Within Our Current Cash Window

Synlogic Leadership

Aoife Brennan, MB ChB President & CEO

Richard Riese, MD PhD CMO

Chief Operating Officer

Peter Barrett, Chair Atlas Venture

Ed Mathers

NEA

Mike Burgess

Turnstone Biologics

Richard Shea

Syndax Pharmaceuticals

Chau Khuong

Orbimed Advisors

Patricia Hurter

Lyndra Therapeutics

Nick Leschly Bluebird Bio

Dave Hava, PhD Chief Scientific Officer

Gregg Beloff, JD

Interim CFO

Amanda Kay, PhD Head of BD & Strategy

Antoine Awad

Caroline Kurtz, PhD Head of Product Development

Daniel Rosan Head of Corp. Finance & Investor Relations

Corporate Overview

- The premier Synthetic Biology platform to engineer bacterial Synthetic Biotic medicines that benefit patients in new ways
- Team, technology and portfolio to succeed
- Core focus: Rapidly progressing metabolic programs
 - SYNB1618 PKU Phase 2 synPheny FPI expected late 2020
 - Advanced IND for **SYNB8802 in Enteric Hyperoxaluria**: FIH expected early 2021
- Partnership Opportunities: Immunomodulation in immunology and oncology
 - SYNB1891 monotherapy continues to enroll: data expected late 2020
- Strong cash position

Synthetic Biotic Medicines: A New Class of Cellular Medicines

Cellular

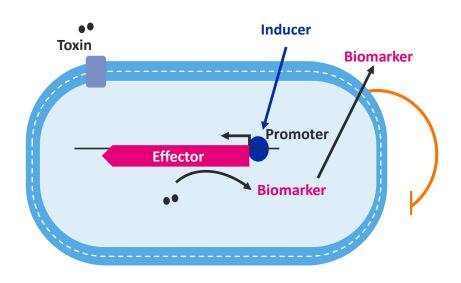
+

Programmable

= |

Synthetic Biotic Medicine

Bacterial Chassis
Non-pathogenic


Synthetic Biology
Reusable Parts

Inducer-Promoter Switch

Effector Design

Safety Features

Reusable Parts Enable Rapid Iteration Of Rationally Designed Prototypes

Library of Parts To Generate Prototypes

Synthetic Biology Library Rapidly Generates Drug Candidates

Component

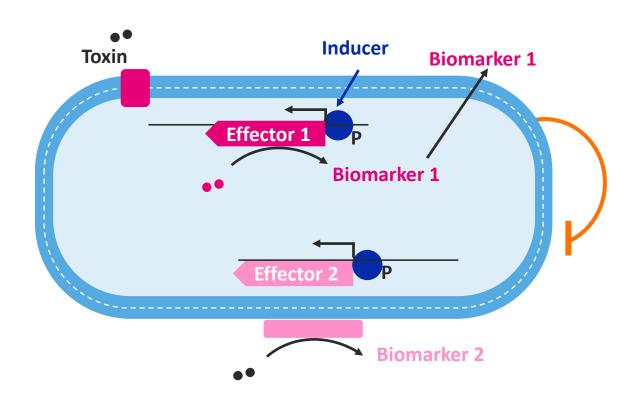
Bacterial Chassis

Effector 1
Effector 2

••••

Switch

Safety Features


Benefit

Probiotic: Decades of human use & safety data

Proteins for activity: Can generate biomarkers

Inducer-promoter pair: Controls gene expression

Auxotrophies: Prevents growth within or external to the body

SYNB1618 Built From Synthetic Library Specifically To Consume Phe

Component	Approach	Benefit			
Bacterial Chassis	<i>E. coli</i> Nissle	Probiotic - decades of human use & safety data	••		Hippuric Acid (HA)
Switches	FNR & AraC promoter	Promoters control expression during manufacturing and at site of action	Phenylalanine (Phe)	PAL3	(TCA)
Pump	PheP	Pumps Phe into cell		he	Trans-cinnamic acid (TCA) △ day
Effector 1	<i>PAL3</i> Enzyme	Degrades Phe to TCA (measurable biomarker of activity)		LAAD	araC
Effector 2	<i>LAAD</i> Enzyme	Alt. Phe-consuming pathway		Phe	Phenylpyruvate (PP)
Safety Features	Δ dap	Auxotrophy – requires diaminopimelic acid (DAP) to grow			Phenyl-lactic acid (PLA)

Hyperoxaluria strain SYNB8802

Engineered to convert oxalate to formate

Component	Approach	Benefit	
Bacterial Chassis	<i>E. coli</i> Nissle	Decades of human use	Oxalate Formate Ox/formate
Switch	FNR promoter	Inducer-promoter pair	Pump (<i>OxLT</i>) Formate CoA+ ATP
Pump	OxLT	Pumps oxalate in & formate out	Ppi + Oxalyl CoA Formyl CoA
Effector 1	OxdC and associated components	Catalyzes conversion of oxalate to formate	OxdC
Safety Features	∆ thyA	Controls growth	

SYNB1891 Design

Leveraging the ability of bacteria to interact with the immune system to turn a cold tumor hot

Component

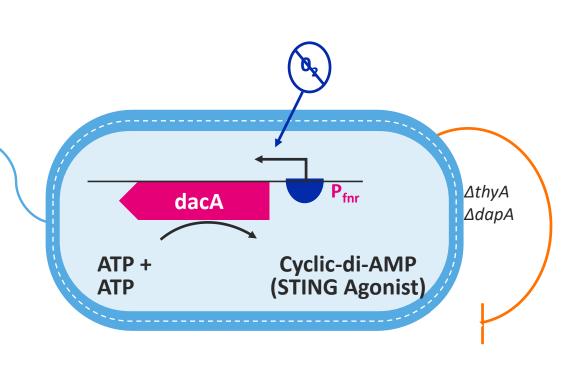
Benefit

Bacterial Chassis

Switch

Effector: STING Agonist

Safety Features


Targeting to antigen presenting cells in the tumor microenvironment.

Innate immune activation

STING-agonist production restricted to hypoxic TME for sustained payload delivery

Innate immune activator compounds with chassis effect

Dual auxotrophies inhibit bacterial proliferation outside of tumor

synlogic

301 BINNEY ST., #402, CAMBRIDGE, MA 02142

TEL: 617-401-9975

WEB: WWW.SYNLOGICTX.COM EMAIL: lnkouse lnkouse <a

© SYNLOGIC. ALL RIGHTS RESERVED.