synlogic

Bringing the
Transformative Power of
Synthetic Biology to
Medicine

Corporate Presentation January 2021

Forward Looking Statements

This presentation contains "forward-looking statements" that involve substantial risks and uncertainties for purposes of the safe harbor provided by the Private Securities Litigation Reform Act of 1995. All statements, other than statements of historical facts, included in this presentation regarding strategy, future operations, future financial position, future revenue, projected expenses, prospects, plans and objectives of management are forwardlooking statements. In addition, when or if used in this presentation, the words "may," "could," "should," "anticipate," "believe," "estimate," "expect," "intend," "plan," "predict" and similar expressions and their variants may identify forward-looking statements. Examples of forward-looking statements include, but are not limited to, the approach we are taking to discover and develop novel therapeutics using synthetic biology; statements regarding the potential of our platform to develop therapeutics to address a wide range of diseases, including: metabolic diseases, inflammatory and immune disorders, and cancer; the future clinical development of Synthetic Biotic medicines; the potential of our technology to treat phenylketonuria and cancer; the expected timing of our anticipated clinical trial initiations and availability of clinical data; the benefit of orphan drug and fast track status; the adequacy of our capital to support our future operations and our ability to successfully initiate and complete clinical trials; the results of our collaborations; and the difficulty in predicting the time and cost of development of our product candidates. Actual results could differ materially from those contained in any forward-looking statement as a result of various factors, including, without limitation: the uncertainties inherent in the preclinical development process; our ability to protect our intellectual property rights; and legislative, regulatory, political and economic developments, as well as those risks identified under the heading "Risk Factors" in our filings with the SEC. The foregoing review of important factors that could cause actual events to differ from expectations should not be construed as exhaustive and should be read in conjunction with statements that are included herein and elsewhere, including the risk factors included in our quarterly report on Form 10-Q filed with the SEC on May 8, 2020, and in any subsequent filings we make with the SEC. The forward-looking statements contained in this presentation reflect our current views with respect to future events. We anticipate that subsequent events and developments will cause our views to change. However, while we may elect to update these forward-looking statements in the future, we specifically disclaim any obligation to do so. These forward-looking statements should not be relied upon as representing our view as of any date subsequent to the date hereof.

Recent Progress: Execution Across the Portfolio

Metabolic Programs

Rapidly progressed metabolic programs

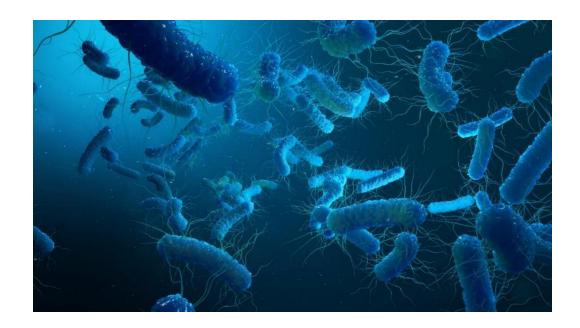
- **SYNB1618 in PKU** Phase 2 *SynPheny-1* study initiated
- IND for SYNB8802 in Enteric
 Hyperoxaluria opened and Phase 1 study initiated

Advanced preclinical work in additional undisclosed metabolic indications

Immunomodulation

Immunomodulation in immunology and oncology

- SYNB1891 monotherapy demonstrated target engagement and meaningful pharmacodynamic effects
- Advancing to combination with anti-PD1


Advanced exploratory work in IBD

We are the premier Synthetic Biology platform engineering bacterial Synthetic Biotic medicines

A New Class of Medicines

Bacteria and Humans Co-Evolved and Co-Exist

We Rationally Design Bacteria
To Provide Clinical Benefit

The Result is Synthetic Biotic Medicines with Potent and Programmable Therapeutic Effects

Building a Diverse Portfolio of Synthetic Biotic Medicines

Platform for Clinical Benefit Across Multiple Disease States

Validated Biological Targets

Where a
Synthetic Biotic
medicine is
uniquely
positioned to
impact patients

Enabling Engine
Core Differentiating
Capabilities

Synthetic Biology Internal + Ginkgo

Manufacturing of live Synthetic Biotics

Regulatory, Translational & Clinical Dev.

Internal Focus: Metabolic Programs

Consumption of toxic metabolites from the GI tract

External & Collaboration Focus: Immunomodulation

Immunology and oncology: Leveraging the ability of bacteria to **interact** with the immune system

Enabling Engine: Driver for Success

Enabling Engine
Core Differentiating
Capabilities

Synthetic Biology Internal + Ginkgo

Regulatory, Translational & Clinical Dev.

Clinical Evidence

- >200 humans dosed with Synthetic Biotic medicines
- 4 INDs opened with the U.S. FDA
- Supportive regulatory feedback from global agencies
- Safe (>100 years of human experience) probiotic bacterial chassis

Core Technology

- Deep synthetic biology expertise with Ginkgo Bioworks collaboration
- Modular and reusable synthetic biology components enable iterative,
 efficient platform learning
- Internal process development and GMP manufacturing capabilities

Robust Pipeline

	Exploratory	Preclinical	IND-Enabling Studies	Phase 1	Phase 2
	SYNB1618				
Phenylketonuria					
Enteric Hyperoxaluria	SYNB8802				
Other Metabolic Programs					
Immuno-Oncology Solid Tumors	SYNB1891				
Inflammatory Bowel Disease					
Vaccines				Key Metabolic Diseases	
Other Inflammation Programs				Immunomodulation	

Synlogic Entering Data Rich Period in the Clinic

Expected Milestone		2020 2021			
			early	mid	late
SYNB1618	Initiate Ph.2 study in PKU patients	initiated			
PKU Ph.2 Phe-lowering read-out					
SYNB8802	Initiate Ph.1 study in HV and patients	initiated			
HOX	Ph.1 patient read-out				
0.0154.004	Ph.1 Monotherapy interim update	completed			
SYNB1891 I/O	Initiate Ph.1 combination study arm				
., C	Ph.1 combination therapy read-out				

Significant Clinical Readouts within our Current Cash Window

Why Metabolic Diseases For Synthetic Biotic Medicines?

Validated Biology

Diseases with known pathophysiology

Dietary intervention provides support for GI-based approach

Unmet Medical Need

Across both inherited and acquired metabolic diseases

Platform Proof of Mechanism

PKU program demonstrated we can consume toxic metabolites in the GI tract

Subsequent programs build on experience

Unique Advantage of SYNB

Bacteria act catalytically

Contain multiple enzyme pathways

Are protected from digestion within the GI tract

Phenylketonuria (PKU)

Emerging treatment options will continue to leave many patients behind

SYNB1618 demonstrates potential to lower Phe in PKU patients

Phase 2 Phe-lowering trial initiated

Synlogic's Approach to Phenylketonuria (PKU)

Synthetic Biotic Mechanism of Action

Consume Phe in the GI Tract

Reduce Phe in the blood

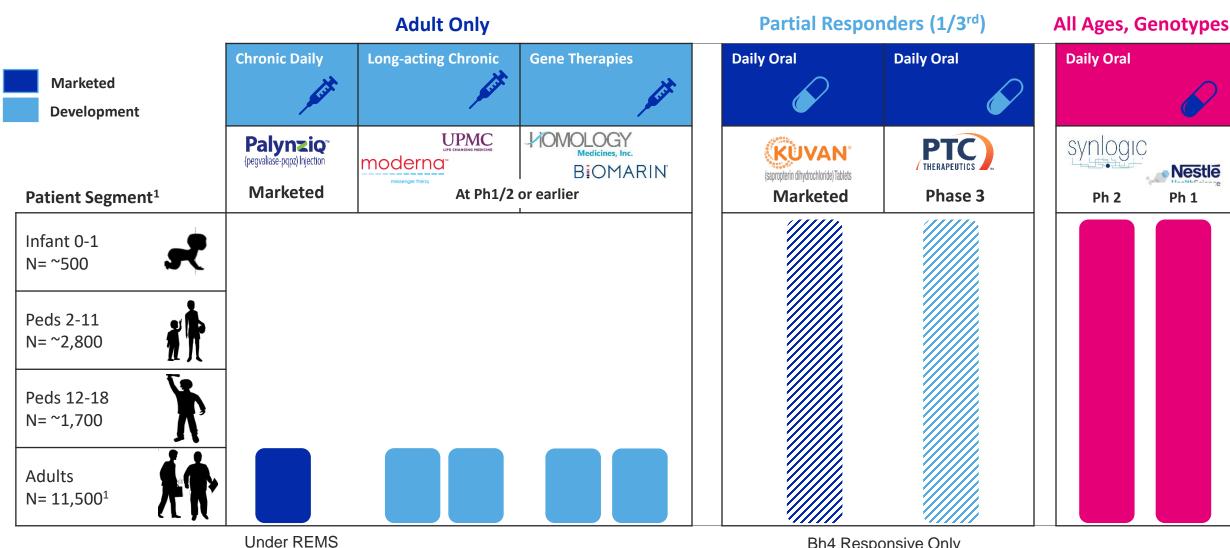
PKU Program Status

SYNB1618 was able to consume Phe in healthy volunteers

Synlogic has initiated a Phase 2 Study in PKU patients (SynPheny-1)

Living with PKU: Parents Expect Their Children to Achieve Their Full Potential

Parents wanted PKU child to avoid institutionalized care before adulthood.

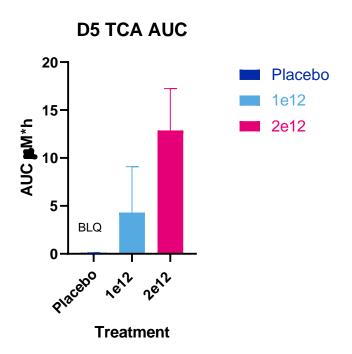

Early diagnosis and strict diet control enables better Phe management.

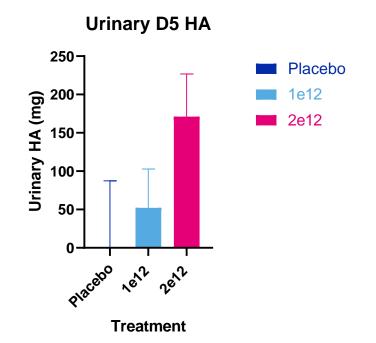
Parents expect PKU child to achieve full potential, college attendance, self-support.

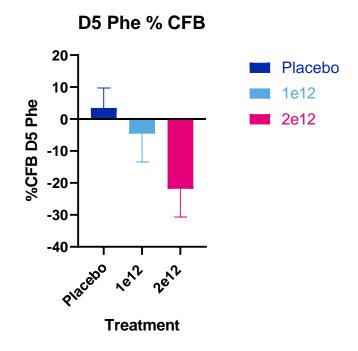
Reality: 25% – 65% of Patients Still Stuggle to Maintain Blood Phe within Target Range

SYNB1618 is Uniquely Positioned to Address Needs Across Ages and Genotypes

Bh4 Responsive Only

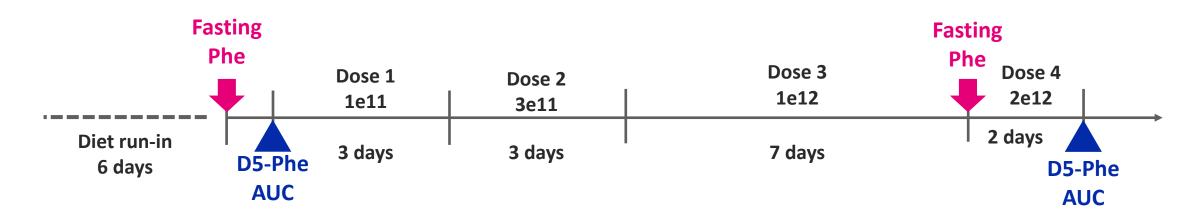

program


SYNB1618 In The Clinic: D5 Tracer Data in Healthy Volunteers


D5 Phe Converted to D5 TCA

D5 TCA Converted to D5 HA

Plasma D5 Phe Blunted


Data are means and 90% CI

SYNB1618 Mechanism Confirmed: Accessed D5 Phe Tracer in Gut & Lowered Plasma D5 Phe

SynPheny-1 Phase 2 Proof of Concept Study in PKU

Demonstrate Phe Lowering in PKU Patients

- Plasma Phe lowering in fasted state at 1 x 10¹² live cells over 7 days
- Post meal D5-Phe AUC lowering at 2 x 10¹² live cells (not impacted by diet)

Validate PD Model

Understand relationship of strain specific biomarkers with plasma Phe lowering

Safety and Tolerability

Patient-Centered Clinical Trial Design & Execution

Directly informed by patient feedback on executing trials in the COVID era

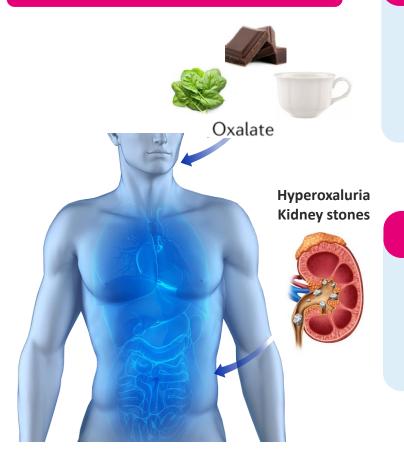
Flexible design allowing home-based or office-based visits

Rigorous & personalized diet control to ensure consistent Phe intake, including 6-day run-in

Dose ramp to improve tolerability & compliance

Enteric Hyperoxaluria

Enteric Hyperoxaluria results in significant kidney damage with no available treatment options


SYNB8802 has the potential to meaningfully lower urinary oxalate levels

SYNB8802 Phase 1 clinical study initiated ahead of schedule

Synlogic's Approach to Enteric Hyperoxaluria

Dietary Sources of Oxalate

Synthetic Biotic Mechanism of Action

Consume Oxalate in the GI Tract

Reduce Oxalate in the urine

Enteric Hyperoxaluria Program Status

SYNB8802 was able to consume oxalate in multiple animal models

Synlogic has initiated a Phase 1 Study in healthy volunteers

Hyperoxaluria: Primary vs. Enteric

	Primary Hyperoxaluria	Enteric Hyperoxaluria	
Pathology	Family of autosomal recessive monogenic disorders in which liver enzyme deficiency results in endogenous oxalate overproduction	Pathogenic hyperabsorption of dietary oxalate, often accompanies bowel disease or bariatric surgery	
Urinary Oxalate Levels	90 – 500 mg / 24 hrs (up to 10x normal)	45 – 130 mg / 24 hrs (up to 3x normal)	
Onset	Pediatric	Adult	
Clinical Mgmt	Limited nutrition options; nephrocalcinosis; dialysis; transplant; pyridoxine	Limited nutrition options; treatment of kidney stones as they occur; nephrocalcinosis; dialysis	
U.S. Epidemiology	~5,000 – 8,000	200,000 – 250,000	
Key Players	Dicerna 2 Alnylam* pharmaceuticals	Allena Synlogic	

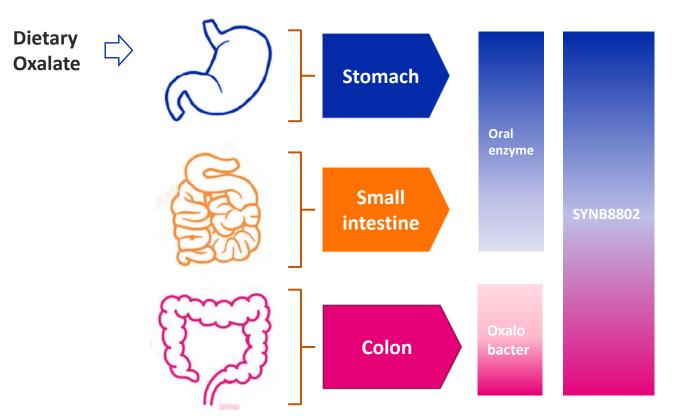
Enteric Hyperoxaluria Case Studies: An Important Cause of Renal Failure

33-Year-Old Female with Crohn's

- 33 yo woman with Crohn's requiring bowel resection resulting in severe hyperoxaluria (135 mg/day)
- Clinical course punctuated by:
 - Recurrent kidney stones
 - Progressive renal failure
 - Hemodialysis
 - Renal transplant x 1
 - Recurrent renal failure
 - Hemodialysis
 - Renal transplant x 2

48-Year-Old Male with Crohn's

- 48 yo man with Crohn's requiring 2 bowel resections with severe hyperoxaluria (110 mg/day)
- Clinical course punctuated by:
 - Recurrent kidney stones
 - Nephrocalcinosis
 - Progressive renal failure
 - Hemodialysis
 - Renal transplant


47-Year-Old Female with Crohn's

- 47 yo woman with Crohn's requiring extensive bowel resections with severe hyperoxaluria (114 mg/day)
- Clinical course punctuated by:
 - Recurrent kidney stones
 - Recurrent obstructive nephropathy
 - Progressive renal failure
 - Bilateral nephrectomies due to stone-related infections
 - Hemodialysis
 - Renal transplant
 - Recurrent renal failure

Urinary oxalate levels remains markedly elevated in all patients, despite aggressive medical regimen

Enteric Hyperoxaluria Disease Pathogenesis

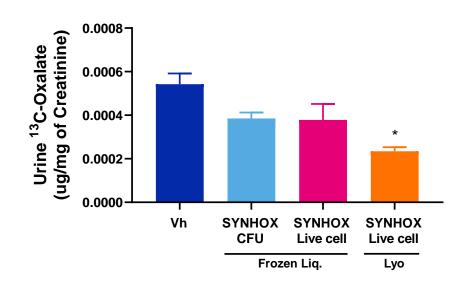
GI Based Therapies Have Demonstrated Lowering of Systemic Oxalate

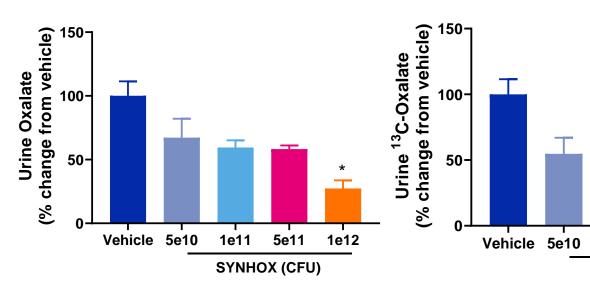
- Pathogenic hyperabsorption of dietary oxalate
- Dietary oxalate absorbed throughout GI tract
- Result is urinary oxalate (Uox) > 70mg/day
- Leads to recurrent kidney stones, nephrocalcinosis, kidney failure
- Treatment must absorb oxalate throughout GI tract, esp. in colon

Intestinal Degradation of Oxalate Throughout GI Tract Could Enhance Oxalate Lowering

5e11

SYNHOX (CFU)


1e12


1e11

SYN-HOX Attenuates Urinary Oxalate Increase

SYN-HOX Consumes ¹³C-Oxalate in Mice

SYN-HOX Attenuates Urinary Oxalate Increase In NHPs

SYN-HOX Consumes Oral Load of Oxalate in Mouse and Non-Human Primate Models

Enteric Hyperoxaluria: Phase 1 Design Provides PoC Opportunity

Phase 1A

Dietary Hyperoxaluria (Healthy Volunteers)

Multiple Ascending Dose

- High oxalate & low calcium diet run-in
- Induce dietary hyperoxaluria
- Primary: Safety & tolerability
- Secondary: Microbial kinetics of strain
- Exploratory: Change in plasma and urine biomarkers

Phase 1B

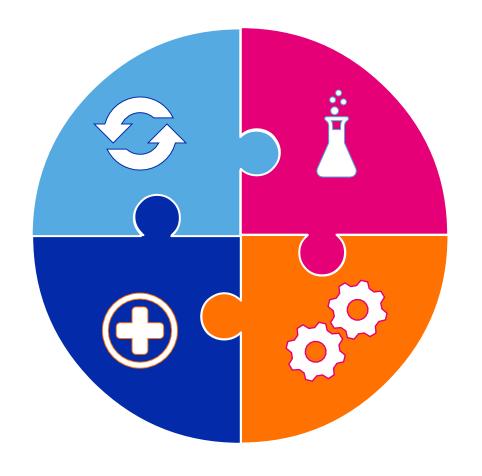
Enteric Hyperoxaluria Patients

Cross-over

- TID dosing
- N = 20 patients (Roux-en Y gastric bypass)
- UOx >70 mg/day

Roux-en-Y Gastric Bypass Population Provides Opportunity to Demonstrate Urinary Oxalate Lowering in Disease State

Why Diseases of Immune System Regulation For Synthetic Biotic Medicines?


Cross-talk Between Bacteria and Immune System

Immune system has evolved to recognize bacteria

Bacteria have evolved mechanisms to control the immune response

Unmet Medical Need

Growing need for novel treatments for immunological diseases and cancer

Platform

Preclinical POC for both immune stimulation and immunoregulation

Can produce immune mediators (small molecules, peptides, human cytokines)

Unique Advantage of SYNB

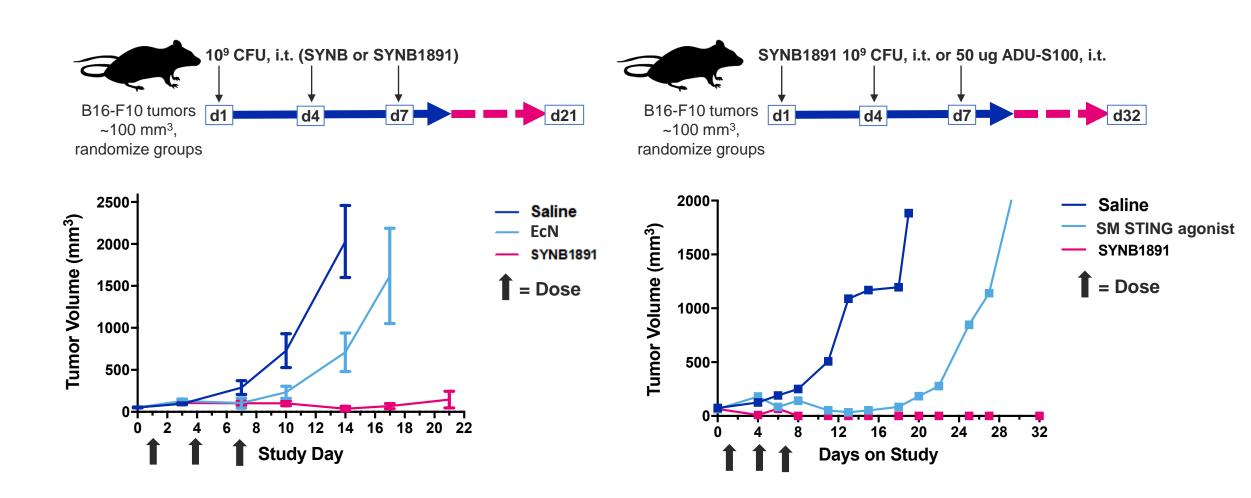
Targeted efficacy and improved safety

Multiple effectors from single Tx strain delivered to site of disease

Immunomodulation & Immuno-Oncology

Synthetic Biotics can be engineered for immune activation or regulation, with application to immuno-oncology

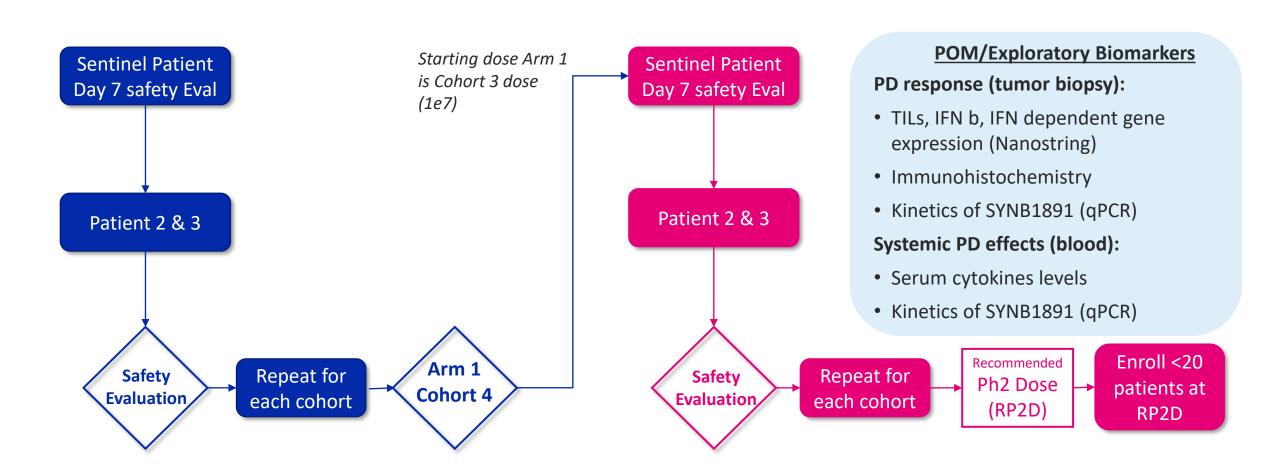
SYNB1891 + checkpoint inhibitors have potential for improved efficacy relative to other STING approaches


SYNB1891 as monotherapy demonstrated target engagement and meaningful pharmacodynamic effects

Phase 1 data in combination with Tecentriq initiated: data will be available in 2021

SYNB1891 Induces Potent Anti-tumoral Effects

Effects Superior to 'Naked' STING Agonist in Animal Model of Cold Tumor



SYNB1891-CP-001 Study Design: Multidose Tolerability, IT Mono and Combo

Proof of mechanism: exploratory biomarkers in advanced solid tumors or lymphomas

Arm 1: Monotherapy Cohorts

Arm 2: Combination Cohorts - Atezolizumab

SYNB1891 Advanced Into Combo. Therapy Arm of Ph. 1 With Tecentriq

SYNB1891 is **safe and well-tolerated** as an intratumoral injection with no dose limiting toxicities or infections to date

SYNB1891 demonstrates target engagement as assessed by upregulation of IFN-stimulated genes and T-cells

SYNB1891 demonstrates **meaningful pharmacodynamic effects** including systemic cytokine responses observed in two subjects

Evidence of durable stable disease was observed in two patients

Monotherapy dose escalation will continue in parallel to combination dose escalation of SYNB1891 with fixed dose of Atezolizumab (Tecentriq)

Combination therapy data will be available in H2 2021

3rd Quarter 2020 Summary Results

Balance Sheet (unaudited)

Cash, Cash Equivalents, and Short & Long Term Marketable Securities

30 Sept 2020	30 June 2020
\$102.0 M	\$109.1M

Statement of Operations (unaudited)			
R&D Expenses			
G&A Expenses			
Net Loss			
Net loss per share – basic and diluted*			
Weighted Average Shares Outstanding*			

Three Months Ended				
30 Sept 2020	30 Sept 2019			
\$10.5 M	\$10.6 M			
\$3.0 M	\$3.9 M			
\$(13.2 M)	\$(13.3M)			
\$(0.36)	\$(0.39)			
36.3 M	34.2 M			

Strong Cash Position with Runway into 2022

Synlogic Leadership

Aoife Brennan, MB ChB **President & CEO**

Richard Riese, MD PhD **CMO**

Peter Barrett, Chair Atlas Venture

Ed Mathers

NEA

Mike Burgess

Richard Shea

Turnstone Biologics Syndax

Chau Khuong

Orbimed Advisors

Michael Heffernan

Collegium

Nick Leschly

Patricia Hurter Bluebird Bio

Lyndra Therapeutics

Gregg Beloff, JD Interim CFO

Antoine Awad COO

Dave Hava, PhD **CSO**

Daniel Rosan Head of Corp. Finance & Investor Relations

Caroline Kurtz, PhD **Head of Product Development**

Synthetic Biotic Medicines: A New Class of Cellular Medicines

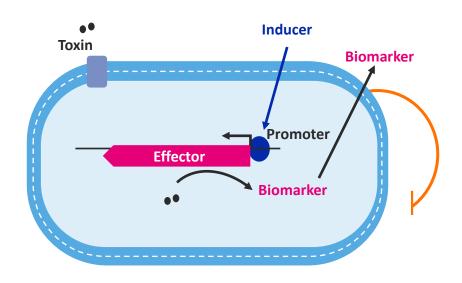
Cellular

+

Programmable

Synthetic Biotic Medicine

Bacterial Chassis
Non-pathogenic


Synthetic Biology
Reusable Parts

Bacterial Chassis

Inducer-Promoter Switch

Effector Design

Safety Features

Reusable Parts Enable Rapid Iteration of Rationally Designed Prototypes

Library of Parts to Generate Prototypes

Synthetic Biology Library Rapidly Generates Drug Candidates

Component

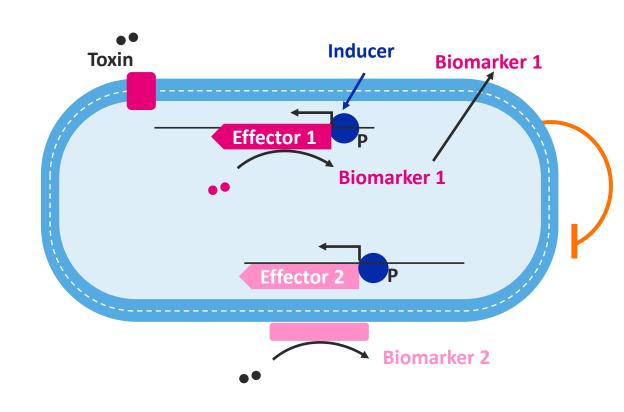
Bacterial Chassis

Effector 1
Effector 2

••••

Switch

Safety Features


Benefit

Probiotic: Decades of human use & safety data

Proteins for activity: Can generate biomarkers

Inducer-promoter pair: Controls gene expression

Auxotrophies: Prevents growth within or external to the body

SYNB1618 Design

Built from Synthetic Library Specifically to Consume Phe

Component	Approach	Benefit		
Bacterial Chassis	<i>E. coli</i> Nissle	Probiotic - decades of human use & safety data		Hippuric Acid (HA)
Switches	FNR & AraC promoter	Promoters control expression during manufacturing and at site of action	Phenylalanine (Phe) Phep Phep Phep	AL3 P _{fnr}
Pump	PheP	Pumps Phe into cell	Phe	Trans-cinnamic Δ dap acid (TCA)
Effector 1	<i>PAL3</i> Enzyme	Degrades Phe to TCA (measurable biomarker of activity)		LAAD araC
Effector 2	<i>LAAD</i> Enzyme	Alt. Phe-consuming pathway	Phe	Phenylpyruvate (PP)
Safety Features	Δ dap	Auxotrophy – requires diaminopimelic acid (DAP) to grow		Phenyl-lactic acid (PLA)

SYNB8802 Design

Engineered to Convert Oxalate to Formate for the Treatment of Enteric Hyperoxaluria

Component	Approach	Benefit	
Bacterial Chassis	<i>E. coli</i> Nissle	Decades of human use	Oxalate Formate Ox/formate
Switch	FNR promoter	Inducer-promoter pair	Pump (OxLT) Formate CoA+ ATP
Pump	OxLT	Pumps oxalate in & formate out	Ppi + Oxalyl CoA Formyl CoA
Effector 1	OxdC and associated components	Catalyzes conversion of oxalate to formate	OxdC
Safety Features	Δ thyA	Controls growth	

SYNB1891 Design

Leveraging the Ability of Bacteria to Interact with the Immune System to Turn a Cold Tumor Hot

Component

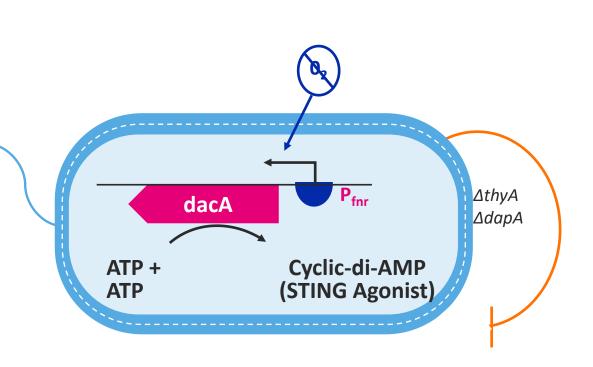
Benefit

Bacterial Chassis

Switch

Effector: STING Agonist

Safety Features


Targeting to antigen presenting cells in the tumor microenvironment.

Innate immune activation

STING-agonist production restricted to hypoxic TME for sustained payload delivery

Innate immune activator compounds with chassis effect

Dual auxotrophies inhibit bacterial proliferation outside of tumor

synlogic

301 BINNEY ST., #402, CAMBRIDGE, MA 02142

TEL: 617-401-9975

WEB: WWW.SYNLOGICTX.COM EMAIL: lnkouse lnkouse <a

© SYNLOGIC. ALL RIGHTS RESERVED.