Proof-of-Concept Study of Oxalate-Consuming Synthetic Biotic Medicine SYNB8802 in Enteric Hyperoxaluria after Roux-en-Y Surgery

Puurunen M, Denney WS, Ndugga-Kabuye MK, Marsh A, Lubkowicz D, Kurtz C, Brennan A, Riese R

Background

- Enteric hyperoxaluria (EH) is characterized by elevated urinary oxalate excretion due to increased gastrointestinal oxalate absorption
- Increased oxalate absorption is due to underlying fat malabsorption and/or increased intestinal permeability caused by inflammatory bowel disease, short bowel syndrome, celiac disease, cystic fibrosis and pancreatic insufficiency
- EH has been associated with recurrent kidney stones and adverse renal outcomes, including chronic kidney disease (CKD)
- No pharmacological therapies are currently available to treat EH

SYNB8802, a genetically engineered non-colonizing strain to convert oxalate to non-toxic metabolites

Component	SYNB8802 Design	
Therapeutic strategy	Metabolite consumption: Engineered to Convert Oxalate to Formate for the Treatment of Enteric Hyperoxaluria	
Bacterial Chassis	<i>E. coli</i> Nissle (probiotic chassis organism)	
Effector(s)	OxdC and associated components: Catalyzes conversion of oxalate to formate	
Pump	<i>OxLT:</i> Pumps oxalate in & formate out	
Switch	FNR promoter: Inducer-promoter pair	
Safety Features	Δ thyA: Controls growth so strain does not colonize	

Pathophysiology of Enteric Hyperoxaluria

SYNB8802 Consumes Oxalate Throughout the GI Tract

Phase 1 Study Design

SYNB8802 is being investigated in an ongoing Phase 1a/b study

- In the Phase 1a part healthy volunteers consume a high oxalate (400-600mg/day), low calcium (400mg/day) diet and provide daily 24 hour urine collection and fecal samples
- Following a run in period, they are randomized to SYNB8802 or placebo
- Cohorts of N=9 (6 active: 3 placebo) are enrolled in a multiple ascending dose (MAD) study. Study doses range from 5x10¹⁰ to 6x10¹¹ live cells, dosed TID with meals.
- Primary outcome is safety and tolerability; exploratory outcome includes pharmacodynamic effects of SYNB8802 on urine and fecal oxalate

		Randomized to SYNB8802 (N=6) or placebo (N=3)		
Study Design	Diet Run-in 4 days	Optional Dose-ramp Up to 4 days	TID Treatment Period 5 days	
	Controlled diet and daily 24-hr UOx collection			

Separation of UOx in active and placebo groups started from the BID day and was maintained throughout dosing period

Dietary hyperoxaluria reaches steady state after 6 days of diet (on Day 2 of dosing)

SYNB8802 3e11 dose TID normalizes UOx levels

Dose-related Reduction of Urinary Oxalate at Well-tolerated Doses

- SYNB8802 showed dose-related reduction of UOx
- SYNB8802 was generally well tolerated in healthy volunteers
- No serious or systemic adverse events were observed
- Most frequent AEs mild or moderate, transient, and GI-related
- A dose-ramp improved tolerability

Dose-related Reduction of Fecal Oxalate

- Total fecal oxalate was quantified using a high-performance liquid chromatography—tandem mass spectrometry (LC-MS/MS) method
- SYNB8802 led to dose-related reduction of fecal oxalate confirming that changes in UOx were related to consumption of oxalate by SYNB8802 in the GI tract

Conclusions

- There is an unmet medical need for pharmacological therapies in EH
- SYNB8802, an investigational synthetic biotic medicine, was safe and well-tolerated in healthy volunteers
- In a dietary-induced hyperoxaluria model in healthy volunteers SYNB8802 lead to a consistent and significant reduction of urinary oxalate
- SYNB8802 markedly reduced the amount of oxalate in feces in a dose-related manner, confirming strain ability to access dietary oxalate from within the gut
- SYNB8802 has achieved proof-of-mechanism
- Further clinical development as a potential treatment for EH is warranted